
Review of Automatic Document Formatting

Nathan Hurst
Adobe Systems Inc.

345 Park Ave.
San Jose, CA 95110
hurst@adobe.com

Wilmot Li
Adobe Systems Inc.

345 Park Ave.
San Jose, CA 95110
wilmotli@adobe.com

Kim Marriott
Clayton School of IT
Monash University
Vic. 3800, Australia

Kim.Marriott@infotech.monash.edu.au

ABSTRACT
We review the literature on automatic document formatting
with an emphasis on recent work in the field. One common
way to frame document formatting is as a constrained op-
timization problem where decision variables encode element
placement, constraints enforce required geometric relation-
ships, and the objective function measures layout quality.
We present existing research using this framework, describ-
ing the kind of optimization problem being solved and the
basic optimization techniques used to solve it. Our review
focuses on the formatting of primarily textual documents,
including both micro- and macro-typographic concerns. We
also cover techniques for automatic table layout. Related
problems such as widget and diagram layout, as well as tem-
poral layout issues that arise in multimedia documents are
outside the scope of this review.

Categories and Subject Descriptors
I.7.2 [Document and Text Processing]: Document Prepa-
ration—Format and notation, Photocomposition/typesetting

General Terms
Algorithms

Keywords
adaptive layout, optimization techniques, typography

1. INTRODUCTION
Automatic document formatting underlies many widely

used document processing applications. While early doc-
ument authoring tools in the 60s and 70s provided rela-
tively little automatic formatting due to limited comput-
ing power, more recent document authoring tools includ-
ing TEX [49], Adobe R© InDesign R©, QuarkXPress R©, and
Microsoft R© Publisher provide semi-automatic layout to re-
lieve the burden on the author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09 ...$10.00.

In the last fifteen years there has been a resurgence of in-
terest in automatic layout because of the World Wide Web
(WWW) and variable data printing (VDP). This has re-
sulted in a shift of focus from micro-typographic concerns
such as line breaking to macro-typographic concerns such as
page layout. One of the design goals of modern web doc-
ument standards such as HTML and CSS has been to sep-
arate the document content from its presentation so as to
allow the layout to adapt to different viewing devices and to
different user requirements, such as for larger fonts. Further-
more, dynamic content makes it impossible for the author
to fully specify the final layout of a document. This is an
issue for web pages and also for VDP in which improvements
in printer technology now allow companies to cheaply print
material which is customized to a particular recipient.

We believe the need for high-quality automatic layout will
only increase. The devices used to view documents are
becoming more varied (print, monitor, eBook, PDA, etc.)
making automatic layout adaptation increasingly desirable,
and rapidly growing information about user desires and re-
quirements allows better customization of document con-
tent. Thus, developing better high-quality automatic layout
should continue to be a central concern of the document
processing community over the next decade.

Hundreds of articles have been written on automatic docu-
ment formatting. They have appeared in a variety of venues
and many of them are relatively recent. Since the last sur-
veys of automatic formatting are more than fifteen years
old [25, 24], we felt that it would be useful and timely to
review this literature. We focus on recent papers, identify
promising approaches and also problem areas. One difficulty
with a review of this kind is delimiting what is meant by doc-
ument formatting. We focus on primarily textual documents
and do not consider widget layout or any kind of diagram
layout. However, we do include table layout because this
problem can be regarded as a restricted type of page layout
with similar global tradeoffs. We also do not consider tem-
poral layout issues that arise in multimedia documents or
cropping/resizing of images.

High-quality automatic document formatting is an ex-
tremely difficult problem. The difficulties are threefold. First,
it is hard to quantify what makes a good layout. While it is
unrealistic to expect automatic layout systems to rival the
creativity of a good graphic designer, we do need precise
methods to identify when a layout is obviously wrong so as
to be able to generate a layout which is reasonable. Second,
layout is computationally difficult. Even seemingly simple
sub-tasks like table layout or certain kinds of float place-

99

ment are NP-Hard. The third difficulty is the complexity
of designing and implementing layout tools. This is because
it is difficult to cleanly break layout into well-defined sub-
tasks since decisions interact – line breaking can affect figure
placement – and typographic conventions are extremely var-
ied. Thus, it is easy to end up with a complex, ad hoc and
unmaintainable software system.

We believe that a good way of approaching document for-
matting is as a constrained optimization problem. Decision
variables encode where to place the elements, constraints
enforce required geometric relationships, such as alignment
or containment in a page, and the objective function mea-
sures the quality of the layout. Viewing automatic layout as
a kind of constrained optimization problem provides some
help with the above three issues. It encourages separation of
the problem specification from the techniques used to solve
it and forces a precise statement of the problem and objec-
tive function. It also encourages the exploration of different
ways to solve the problem and the use of generic techniques
for constrained optimization which can simplify software de-
velopment. Our review will be based on this perspective.

A contribution of the review is to present existing research
in terms of the kind of optimization problem being solved
and the basic optimization technique used to solve it. We
provide a brief introduction to constrained optimization in
Section 2. The other main dimension we use to classify the
research is the conceptual stage in document formatting. In
Section 3 we start with micro-typographic concerns: kern-
ing, line breaking and justification. In Section 4 we cover
macro-typography: choice of the logical layout which speci-
fies the elements and their abstract layout on each page, and
fine tuning of the layout to adapt to dynamic content and
the viewing environment. We treat table layout as a sepa-
rate issue because of the many specialized algorithms that
have been investigated. These are presented in Section 5.

2. CONSTRAINED OPTIMIZATION
In this section we briefly review the main generic ap-

proaches to solving constrained optimization problems that
have been considered in document formatting.

It is standard to distinguish between continuous problems
in which the variables range over the real numbers, dis-
crete problems in which the variables can range over dis-
crete choices and mixed problems in which variables can be
either continuous or discrete. Both continuous and discrete
optimization techniques have been used for document for-
matting.

2.1 Continuous problems
Two common approaches for solving continuous problems

are variable elimination and iterative techniques [10, 67].
Variable elimination works by simplifying the problem to
a solved-form in which each variable has a simple expres-
sion giving its value in terms of previously computed vari-
ables. Examples includes Gauss-Jordan elimination for solv-
ing systems of linear equations and the Simplex Algorithm
for solving linear programming problems. Variable elimi-
nation approaches work well for simple constraints such as
linear constraints but are not well-suited to complex non-
linear constraints.

Iterative techniques, such as gradient descent, repeatedly
improve the current solution. Here the main difficulty is en-
suring that they converge in reasonable time and that they

converge to a global minimum rather than just a local min-
imum. Interior point methods are a kind of iterative tech-
nique often used to solve convex problems (such as linear,
quadratic and conic programming problems) in which any
local minimum is guaranteed to be a global minimum.

One simple class of optimization problems are one-dimen-
sional minimization problems. Here, binary or secant-like it-
erative search methods provide a simple and efficient solving
technique. As we shall see such problems occur reasonably
often in document layout.

2.2 Discrete problems
There are two main approaches to solving discrete con-

strained optimization problems: constructive search [73] and
local search [26]. Both can use stochastic techniques to es-
cape from local minimum although this is more common
with local search.

Constructive search methods incrementally construct the
layout by extending a partial solution, exploring different
choices in the extension. In the case of document layout,
for instance, they might choose at each step how to extend
the current layout by adding a line of text or adding a fig-
ure. Efficiency requires that state which are equivalent with
respect to future construction steps but which have been
reached by different construction steps are merged into a
single state – this is the key idea behind dynamic program-
ming. Heuristics can be used to guide the search and to
prune the search space. If possible, safe heuristics which
guarantee that an optimal solution will be found are pre-
ferred, but unsafe heuristics are often used for efficiency.

The A� class of algorithms are a good example of a safe
constructive search method. For each state they use a con-
servative estimate of the penalty of the best complete so-
lution that could be obtained by extending the state. At
each step the state with the lowest estimate is chosen for
expansion.

Somewhat related are branch-and-bound based mathe-
matical programming techniques in which a conservative
continuous relaxation of the problem is used to guide the
search. This is a standard approach for solving Mixed In-
teger Linear Programming (MILP) problems. Interestingly,
MILP techniques are very rarely used in document layout.
In text and document layout a useful continuous approxima-
tion has been to view text as an incompressible liquid and
approximate it using a non-linear area constraint or con-
junction of linear inequalities.

Beam search based methods in which only the k-best par-
tial solutions (based on some heuristic penalty function) are
considered at each step are an example of an unsafe heuristic
approach which is not guaranteed to find the optimal solu-
tion. An extreme of beam search are greedy techniques in
which only the best partial solution is chosen at each step.

Local search methods1 work with complete solutions. They
include trajectory methods such as simulated annealing which
try to improve a single solution by exploring the neigh-
bouring solutions and population based meta-heuristic tech-
niques like genetic algorithms. These are very powerful
generic techniques. Efficiency crucially relies on good search
heuristics and definition of the “neighbourhood.” Limita-
tions are lack of predictability – changing the problem slightly

1While we have used local search for this class of optimiza-
tion methods there is as yet no widely accepted term – local
search is sometimes used to refer to trajectory methods.

100

can lead to quite different solutions even if the technique is
deterministic – and difficulty in handling constraints. Hill-
climbing methods are a trajectory search in which the cur-
rent solution is iteratively improved by moving to a better
neighbour until there is no better neighbour, in which case
a local optimum has been reached.

3. MICRO-TYPOGRAPHY
Micro-typography is concerned with the low-level compo-

sition of text: kerning, line breaking and justification. Au-
tomated techniques are increasingly used in practical appli-
cations.

3.1 Kerning
The first issue is how close to place adjacent characters.

The obvious approach is to base this on the character’s
bounding box but this can lead to visually different spac-
ing between letters. To overcome this optical kerning can
be used in which the visual appearance of the characters is
taken into account. Closely related is optical margin align-
ment in which the visual appearance of the characters is
taken into account when placing characters on the margin
of a text block so as to achieve a visually even margin. While
good fonts provide kerning for each pair of characters in the
font there is still a need for automatic kerning since: (a)
many fonts do not provide good kerning information or do
not give it for different point sizes and (b) margin kerning
information for optical margin alignment assumes vertical
margins and so does not handle layout with non-rectangular
cut-outs etc., and (c) does not handle mixed font text, such
as drop caps or a mixture of italic and roman fonts. There
has been little published research on automatic optical kern-
ing. The kf -module of the hz typesetting program provided
the first automatic optical kerning that we know of [46, 81,
53, 32] and Adobe InDesign also provides automatic kerning.

3.2 Line breaking
The next optimization problem is to determine which word

(or part of a word if hyphenation is allowed) to place at
the end of the line. Historically this problem has been
known as ‘h and j’, hyphenation and justification. Auto-
matic line breaking algorithms use constructive search meth-
ods, adding a line of text at a time. The first document
layout used a simple first-fit strategy in which words were
added until no more could fit.2 This an example of a greedy
algorithm. TROFF [47] used a local heuristic algorithm to
try and neaten up pairs of lines.

The seminal paper on line breaking is due to Knuth and
Plass [50] who formulated line breaking and hyphenation
as an optimization problem and gave an efficient dynamic
programming algorithm to solve it that is used in the TEX
document layout system. It works a paragraph at a time
and tries to average out the length of the lines. If the line
length is very short it will try and use hyphenation but this
incurs a substantial penalty, especially if the previous line
was hyphenated. Other packages that provide automatic

2Perhaps surprisingly, even today most word processors,
web browsers and user interface toolkits still use the sim-
pler first-fit line breaking algorithm in preference to optimal
line breaking algorithms, for ease of implementation, min-
imising the cognitively disruptive rearrangement of text and
perhaps efficiency.

line breaking include the jp-module from the hz typeset-
ting program, Adobe InDesign, and the Breakers plug-in for
QuarkXPress from Blue Sky TeX Systems.

While the Knuth-Plass algorithm works quite well it has
a number of limitations [65]. First, the objective function is
relatively unsophisticated and, for example, does not penal-
ize “rivers” or handle ragged right text well. Second, it does
not handle variable height text laid out in a non-rectangular
region since it requires the length of each line to be known
before computing the layout. This problem appears to be
computationally much more difficult.

The Knuth-Plass algorithm has worst case complexity of
O(kn) where n is the number of words3 and k the maximum
number of words that can fit in a line. However, pruning re-
duces the effective complexity to linear time, as described
by Hirschberg and Larmore [33] and Eppstein et al. [22].
In [40], the Knuth-Plass algorithm was extended to allow
alternative wording of phrases including the use of abbrevi-
ations. Thus, another decision in the algorithm is the choice
of wording. This mirrors the behaviour of human design-
ers who will slightly rephrase text if it leads to better line
breaking. We also mention extensions to the algorithm to
line breaking of musical notation [31, 66].

3.3 Line justification
Once we have identified the line breaks the next step is

to fine-tune the placement of characters and words on the
line. This is typically only performed for fully justified text
where the text must be laid out evenly to fill the entire
line. Possible techniques are to use alternative ligatures and
glyphs, scale the font, scale inter-word spacing and scale
inter-character spacing.

Justification is naturally modelled as one-dimensional con-
tinuous optimization problem. TEX does this. The box and
glue model was introduced in TEX. Lines are composed of
boxes separated by glops of glue each of which has a de-
fault or natural width, a stretchability and a shrinkability.
TEX computes an adjustment ratio that stretches (for short
lines) or shrinks (for long lines) each glue glop by an amount
proportional to the total on that line. So a glue glop that
is twice as stretchable would get twice as much whitespace
when extending a line [48]. While TEX only considers inter-
word spacing, the basic approach can also be used to scale
the font and inter-character spacing. The program pdfTeX
does this [75]. The program hz and Adobe InDesign also
can scale the font and inter-character spacing as part of line
justification.

4. MACRO-TYPOGRAPHY
We now look at the macro-typographic aspects of auto-

matic document layout. This covers the overall appearance
of the layout and includes placement of objects such as float-
ing figures, choice of content and number, size and place-
ment of columns. Research on automatic layout in this area
is quite varied. One reason for this variation is the kind
of document being laid out and, in particular, how tightly
its content is connected and ordered. For instance, a wiki
page or conference paper has a highly connected sequential
stream of components, while a poster or newspaper contains
largely independent non-sequential components. Another is-

3More exactly the number of unbreakable components in the
text

101

sue is the time budget available to the layout system. Offline
algorithms such as used for books and yellow pages directo-
ries can afford lengthy search times as their cost is amortized
over large print runs. Mobile phone displays require low la-
tency and low resource usage. However, perhaps the main
reason for the variation in the approaches are different doc-
ument and page layout models for logically structuring the
document elements.

4.1 Document and page layout models
Different document layout models arise because documents

are viewed on a variety of media. We have identified four
basic models. The first is layout on a single fixed size page
and is used for instance for a printed poster presentation.
The second is layout on an unbounded number of fixed size
pages and is typically used for print media and for PDF
documents.4 The third – vertical scroll layout – is layout
on a single page of fixed width but unbounded height and is
the standard model for viewing HTML and most web doc-
uments. The fourth model – horizontal scroll layout – is
layout on a single page of fixed height but with unbounded
width. While this model is less common we believe that it
will prove to be the most popular model for multi-column
layout on electronic media [16].

The page layout model specifies the kinds of spatial ar-
rangements that the elements on the page can take. They
include:

• Coordinate: This model is very simple and general – each
object is given a location by specifying its coordinates on
the page. This model is used in postscript, pdf and, with
some extensions, in SVG.

• Flow: This simply places elements from a single stream
consecutively on the page. It was the basic model used
in the first versions of HTML.

• Grid: In this model objects on the page are organized
using axis aligned grid lines whose position is a global
property of the page template. The grid is a standard
approach used by graphical designers and is common in
magazine layout and presentation software such as Mi-
crosoft PowerPoint.

• VH-Box: This is a hierarchical model in which a box
is either a simple object, a vertical stack of boxes or a
horizontal sequence of boxes. This is used in TEX.

• Guillotine: This uses a structure known as an orthogonal
space partition tree to represent the allocation of space
on the page. Starting with a single page we can draw
a line either horizontally or vertically across the whole
page. In each of these two regions we can similarly split
either horizontally or vertically.

• Box: The page is organized as a an arbitrary collection of
rectangular regions. This generalizes the VH-Box, Guil-
lotine and Grid models. Tables (Section 5) can also be
regarded as a kind of Box layout.

Automatic macro-typography is conceptually split into
two tasks: Choosing the logical page layout for the doc-
ument (i.e., the elements and the basic geometric relation-
ships between them in each page), and fine-tuning/adjusting
the logical layout. We first discuss approaches that address

4Books are often printed in groups of 16 sides called sig-
natures. Here, there is an opportunity to minimize unused
paper in such groups.

each of these tasks and then describe some recent work on
automatic layout re-targeting that considers aspects of both
problems.

4.2 Fine-tuning
The simpler problem is given a basic page layout how to

fine-tune and adapt this to slightly different content, style
or page size. While a wide variety of techniques have been
used, almost all use continuous optimization techniques.

One-way constraints are the simplest and most common
approach to fine-tuning a logical page layout. A one-way
constraint is exactly like a formula in a spreadsheet cell. It
has the form x = fx(y1, ..., yn) where the formula fx details
how to compute the value of the output variable x from the
input variables y1, ..., yn. We say that the output variable
directly depends upon its input variables. They are solved
using a very simple kind of variable elimination.5 One-way
constraints allow the designer to specify the placement, size
and style of the page elements as functions of the viewport
dimensions, viewer specified style and the size of dynamic
content. They have been used in, for example [61, 37, 41,
63, 59, 74]. The CSS formalism can also be viewed as being
a restricted kind of one-way constraint based formalism in
which the only constraints allowed are unary functions of
the parent element attributes [15].

One-way constraints are simple to implement and can be
solved extremely efficiently. They are also very versatile
since fx can be any function. However, they have two limi-
tations which limits their usefulness.

The first limitation is that a variable can only be the out-
put variable of at most one constraint and cyclic variable de-
pendencies are not allowed.6 An example of where a cyclic
dependency arises in layout is vertical centering of some text
in a non-rectangular shape such as an ellipse. This is inher-
ently cyclic because the height of the text depends on how
high up the layout starts in the ellipse as this affects the
length of the text lines. Thus this cannot be computed us-
ing one-way constraints. The second limitation of one-way
constraints is that they only provide a method for satisfying
a set of constraints. They do not provide support for solving
global optimization problems.

In part because of these limitations, hierarchical multi-
way propagation constraints were used in [78, 79, 28] and
linear arithmetic constraints were used in [12, 43, 3, 4, 58].

The main disadvantage of linear arithmetic constraints is
that they cannot handle the non-linear constraint that a
block must be large enough to contain its content. Here
continuous approximation techniques have proven useful.
Lin [55] used a dynamic linear approximation to the con-
tainment constraint followed by a clean-up pass fixing text
widths and heights to handle such constraints. This cre-
ated a powerful layout engine for adjusting a box layout
to variable data. Hurst and Marriott [35] used a special-
ized iterative gradient projection technique to fine tune the
placement of floating figures in a vertical scroll.

The other main technique that has been used for fine-

5All that the constraint solver needs to do is to order the
constraints so as to ensure that input variables of each for-
mula have been computed before the formula is evaluated
to give the value of the output variable.
6In some systems cyclic variable dependencies are allowed
but the solution found is not guaranteed to satisfy the con-
straints.

102

tuning layouts are one-dimensional optimization techniques.
They are used in TEX to fine-tune HV-Box layouts by re-
cursively spacing out glue glops in vertical and horizontal
box distributions and Hurst [34] investigated their use to re-
cursively fine-tune guillotine layouts. They are also used by
Lin [56] to appropriately scale the font size to fit the textual
content in a fixed size document.

Column balancing was provided in Type & Set [2] using
a dynamic programming approach. Another approach is to
use one-dimensional optimization techniques [39] – these can
also be used for vertical centering. Type & Set also provided
a dynamic programming algorithm to fine-tune allocation of
text to pages to globally minimize the number of widows
and orphans.

Finally, we mention the fine-tuning approach of Loureiro
and Azevedo [57] who use MILP techniques to fine tune
a layout to reduce the number of pages in commercial bill
printing. This works for smaller documents but probably
does not scale up to larger documents. As suggested in [39]
one-dimensional optimization techniques seem like a more
scalable approach.

4.3 Choosing a page layout
The highest-level decision in automatic document layout

is the choice of elements on a page and their logical layout
within the page. This is the most difficult sub-problem in
automatic document layout. Since it is basically a discrete
problem, constructive and local search are the most com-
monly used techniques.

Floating figure placement has attracted some attention.
Here, the aim is to place floats close to references in text
and usually to preserve the order of the floats. The most
common approach, used in TEX and HTML, is a greedy
approach in which each float is placed at the best available
location when it is first encountered. An extension to TEX
to handle float placement in multi-column layout has been
proposed by Mittelbach [64]. This also utilizes a greedy
heuristic.

A variety of complete constructive search methods for op-
timal float placement have also been investigated. The main
problem that has been studied is float placement in paged
documents where the floats are placed at the top and/or
bottom of the page and are effectively as wide as the page.
This is a kind of flow or HV-Box page layout. The objective
of the layout is to ensure that each float occur on the same
page as the first reference to it or on a following page as
close as possible to the reference. The main decisions in the
layout are on which page to place each float and how much
white space to leave at the bottom of each page. Plass [69]
investigated how the precise formulation of this problem af-
fected its difficulty. He showed that if a quadratic penalty
function is used then the problem is NP-hard, but that if
a linear penalty function is used then the optimal layout
can be computed in polynomial time using a dynamic pro-
gramming algorithm. Brüggemann-Klein et al. [17] further
investigated the use of dynamic programming for this prob-
lem.

Placing floats in multi-column layout was considered by
Marriott et al. [62]. They investigated the use of dynamic
programming and A� techniques. Related is yellow pages
layout on multi-column pages. This was investigated by
Johari et al. [42] who used simulated annealing. In their
version of the problem there were two ordered sequences of

content: floating ads which had to be placed at the bottom
of each page and the alphabetical listing of businesses which
were placed on top of the ads. The aim was to place ads close
to their category and to reduce the number of pages. This
problem was also addressed by Graf’s YPPS [29] system.
It was based on extending [28] and using a combination of
multi-way propagation and finite domain label inference, be-
came a commercial product. Hurst and Marriott [35] used
local search techniques to place an unordered sequence of
floating figures on a vertical scroll. They showed that this
float placement problem was NP-Hard.

Feiner [23] introduces automatic layout using computed
grids, the grid lines are computed from the page size and
elements are fitted sequentially to the grid lines. Elements
are uniformly scaled to their grid bounds, elements which
do not fit are either moved to the next page or ignored.

Also related is the work on automatic choice of templates
for grid-like layouts by Jacobs et al. [41]. They used a
dynamic programming algorithm to choose a template for
each page in which figures could occur at locations spec-
ified with one-way constraints. This also allows alterna-
tive choices of textual content. With multiple streams of
text, such as found in newspapers and magazines we also
have the problem of determining a packing for textual el-
ements. Oliveira [19] provides two algorithms for packing
continuous area text into rows and columns for a newspaper
like layout. The use of templates for constructing news-
paper layouts is well understood, with several techniques
dating from 1970s discussed in Lie’s master’s thesis, The
Electronic Broadsheet [54]. Lie describes his approach as
‘playing tetris’, but provides few details. He describes the
work of de Treville [20] and Kan [45], who both provide
general purpose geometric templates for describing and lay-
ing out newspapers automatically using linear constraints.
Schrier et al. [74] reexamined this with a language for gener-
ating templates. This was the basis for the Times Reader7

for reading on-line newspaper articles.
Automatic generation of guillotine page layouts has been

considered by Goldenberg [27] who used genetic algorithm
techniques similar to those used in VLSI layout. Genetic
algorithms were also used in a system presented by Har-
rington/Purvis et al. [30, 70]. They argued that stochastic
methods conceptually provide an easy way to test heuristics
for page layout. However, it is probably fair to say that
neither of these systems give rise to high-quality layouts.

Finally, we note the use of relational grammars to generate
page layouts. They use a rule-based approach to generate
essentially arbitrary placement constraints between the el-
ements of the document. Weitzman and Wittenburg [79]
pioneered this approach, which has since been extended by
Kamps [44], Bateman et al. [6], Kong et al. [51] and di Iorio
et al. [21].

4.4 Retargeting a page layout
Given the rise in popularity of mobile devices, the prob-

lem of automatically retargeting existing page layouts to
small screen displays has become extremely relevant in re-
cent years. Although a variety of solutions have been pro-
posed, most of them adopt one of two main strategies. One
approach is to create a scaled down version of the original
page that retains the overall layout as much as possible while

7Available from https://timesreader.nytimes.com/

103

augmenting or adapting specific page elements to improve
readability and usability. This is essentially a fine-tuning
approach to the retargeting problem. The other strategy is
to completely reformat the web page to produce a layout
that is better suited to small screen viewing.

The problem of reformatting a page is conceptually similar
to choosing a new page layout. However, rather than apply-
ing some of the more general layout strategies described in
the previous subsection, most reformatting approaches im-
pose a pre-defined page layout model that works well for
small devices (e.g., the simple card metaphor used in the
WEST system [11]) and then determine how to organize the
original page content into that layout. This still basically
boils down to a discrete problem in which the goal is to as-
sign the relevant portions of the original content to one of the
regions in the new small screen layout. A common approach
to this assignment problem is to first analyze the original
page to infer its semantic structure (e.g., what content is
most important, what parts of the page are semantically re-
lated) and then use this structure to decide which chunks of
the original content to include and where to position those
chunks in the new layout. Recent techniques tend to use
some combination of visual cues and semantic cues derived
from the Document Object Model (DOM) of the original
page to determine semantic structure. For example, Chen
et al. [18] use heuristics based on common shapes and posi-
tions of semantically meaningful content blocks (e.g., head-
ers, footers, navigation sidebars) to classify various parts of
a page, while Björk et al. [11] use the presence of key page
elements like headings, paragraphs, etc. to infer which pieces
of content are related. In more recent systems [5, 80], low-
level appearance characteristics such as colours and fonts
are also taken into account to identify semantically coherent
blocks of content.

In contrast to reformatting approaches, the main motiva-
tion behind rescaling techniques is to make the retargeted
page look as much as possible like the original page. This
strategy can make it easier for viewers to recognize famil-
iar pages and leverages their spatial memory for accessing
various parts of the page. The key problem with scaling
down web pages is that important elements (e.g., text, im-
ages) can quickly become unintelligible. Some approaches
to improving legibility adopt focus plus context techniques.
For instance, O’Hara et al. [68] propose combining a uni-
formly scaled-down thumbnail view with a separate zoomed
in detail view of the page in a single layout, while the Fish-
net browser [7] enlarges a selected region of the page “in
place” using a fisheye distortion technique. More recent
work such as Minimap [72] and Summary Thumbnails [52]
propose distortion-free methods for enlarging text with re-
spect to the rest of the page to improve readability. The
Summary Thumbnails approach also tries to reduce textual
content (by removing less important words) when necessary
to preserve the original line count of enlarged text.

5. TABLE FORMATTING
Tables are provided in virtually all document formatting

systems. While tables could be considered as just another
page layout model we have chosen to treat table format-
ting as a separate issue because of the many specialized al-
gorithms that have been investigated. Like page layout it
is natural to divide table formatting into two steps. The
first step is to determine the logical table structure from the

multi-dimensional data in the table. The logical structure
specifies the number of columns and rows, the logical cells in
the table and their content and the rows and columns they
occupy. Determining the logical structure requires choosing
which data dimension(s) are placed horizontally and which
are placed vertically, how to nest these if more than one
data dimension is placed on the same spatial dimension,
and, in the case of categorical information, how to order
the categories. To the best of our knowledge there has been
no research into automatically determining the logical ta-
ble structure from the underlying multi-dimensional data.8

However, a variety of authors, including Vanoirbeek, and
Wang and Wood [76, 77], have investigated editing models
for changing the presentation structure while preserving the
logical structure and

The next step is table layout. This finds a feasible layout
for the table, i.e., a width for each column and height for
each row such that each cell in the table is large enough to
contain its content and the designer constraints – such as
two columns have the same width – are satisfied. Usually
the problem is to find a feasible layout satisfying an objec-
tive function such as minimizing the table height for some
maximum allowed width.

Automatic layout of tables which contain text is computa-
tionally expensive. This is because if a cell contains text then
this implicitly constrains the cell to take one of a discrete
number of possible configurations corresponding to different
numbers of lines of text. These lead to an exponential num-
ber of different possible configurations for the table. For
this reason most document formatting systems require the
author to give the width for a column or else compute the
width of a column by laying out the content of each cell on
a single line and setting the column width to the widest of
these. Given the column widths, the row heights are com-
puted in the obvious way: the height of each cell is computed
by taking the maximum height of a row in a column. This
is straightforward to extend to compound rectangular cells.
However, for on-line presentation or variable content it is
not practical to require the author to specify the column
widths at document authoring time. Thus there has been
renewed interest in automatic table formatting.

5.1 Column-driven layout
A simple approach is to compute an ideal width for each

unknown width column (such as the maximum of the width
of each cell in the column when its content is laid out on
a single line) and a minimum width which is the maximum
of the minimum width for each cell in the column. Then,
using a variant of the TEX algorithm for line justification,
compute an adjustment ratio for the table which proportion-
ately scales down the unfixed columns from their ideal size
(but not below their minimum size) until the table is nar-
row enough. Now given the column widths, compute the row
heights by laying out content of the cells in each row. The
effect is to minimize the table height for a particular width,
but, since text cell configurations are not computed and the
two dimensional interaction between columns is ignored, the
method is a fairly coarse approximation.

The suggested automatic layout algorithm for HTML ta-
bles [71] works like this. It also allows the designer to specify
that a column should have width that is some fixed ratio of

8Although we note that HTML was designed to allow some
automated transformations for braille and for speech [14].

104

the special width “*”. The related approach of [13, 3] allows
the designer to specify required and preferred linear arith-
metic constraints over column widths. A linear constraint
solver is then used to determine column widths. Lutteroth
and Weber [60] also allow linear constraints over column
widths in their extension of standard table layout which
allows columns to be partially ordered rather than totally
ordered.

5.2 Cell-driven layout
Better table layout requires modelling the two-dimensional

interaction between cells and the different configurations for
text cells. Beach [8] was the first to consider automatic ta-
ble layout from a constrained optimization viewpoint. He
considered packing rectangular fixed sized cells into a grid
and showed this can be done in polynomial time. He also
consider packing unordered elements into a minimum space
and showed this was NP-complete. He did not consider the
case where cells could contain text with multiple line break-
ing choices. Wang and Wood [77] presented a branch and
bound algorithm, accelerated with a polynomial-time greedy
algorithm for finding a table layout satisfying linear designer
constraints on the column widths and row heights with mul-
tiple line break choices in each cell. They showed that the
associated decision problem was NP-Hard. They modelled
table layout as a satisfaction problem rather than an opti-
mization problem.

Anderson and Sobti [1] showed that finding the minimum
height layout for a fixed maximum width is NP-Complete
for simple tables even without designer constraints. They
also proved that minimising a non-zero linear combination of
overall width and height is computable in polynomial time.
They gave two heuristic methods for finding a minimum
height layout for simple cells. The first was based on encod-
ing table layout as the problem of finding the minimum cut
in a flow graph while the second is a continuous approxima-
tion to the problem in which the convex hull of the configu-
rations is modelled using a conjunction of linear inequality
constraints. They found that the approach based on finding
a minimum cut in a flow graph performed better than the
convex hull approach. However, encoding table layout as a
flow graph is complex and it is not clear how this approach
can be generalised to handle tables with compound cells or
designer constraints.

Using a continuous linear approximation to the constraint
that a cell is large enough to contain its content has been
suggested by a number of other researchers such as Lin [55].
The advantage of the linear approximation that it naturally
generalises to handle compound cells and linear designer
constraints. The main disadvantage is that it can lead to
a large linear program that require the use of sophisticated
linear programming software.

Beaumont [9] and Hurst et al. [38] suggested a non-linear
continuous approximation in which the area of each cell
is constrained to be greater than the area of its content
(when laid out in a single line). Beaumont used the non-
linear solver MINOS to solve the resulting non-linear prob-
lem while Hurst et al. noted that it was a convex optimiza-
tion problem and could be modelled using conic program-
ming and solved using polynomial time interior point meth-
ods. However, the use of sophisticated and slow non-linear
optimization software is not that practical. Hurst et al. [36]
have given a more efficient specialized variable elimination

method for solving a simplified form of the continuous ap-
proximation. Unfortunately, this does not handle compound
cells or lower bounds on cell height and width.

Hurst et al. [38] also gave a simple hill-climbing local
search method for table layout. The algorithm starts from
the narrowest layout for the table and iteratively reduces the
height of a row (and hence the table) by choosing to narrow
the row for which this will lead to the least increase in width
(for a given height reduction).

5.3 Minimal configurations
The main decision in table layout is how to break the

lines of text in each cell. Different line breaks give rise to
different cell configurations. Many of the above table layout
methods require computation of minimal width/height con-
figurations. The difficult issue is to compute the minimum
width for a fixed height rectangle large enough to contain
its textual content. This is an example of a one-dimensional
minimization problem, assuming that the cell content satis-
fies the anti-monotonicity property that the height required
to fit the cell content decreases as the width of the cell in-
creases.

The problem of determining the minimum width for a
fixed height rectangle was first considered in Anderson and
Sobti [1]. A simple, generic approach is to use binary or
secant based search to find the minimum width and to de-
termine the minimum height for a particular width w simply
lay out the text in a box of that width greedily placing text
on the line until it is full. This gives rise to a O(W log N)
time algorithm where W is the number of words and N the
length of the total text. This approach was suggested in
Anderson and Sobti and some improvements are described
in [39].

Other more efficient algorithms for finding the minimum
width have been developed. However they are quite complex
and assume that the box contains uniform height text with
no complex formatting. Thus Hurst et al. [38] gave a O(W)
dynamic programming algorithm where W is the number
of words while Anderson and Sobti gave an O(N1/2 log N)
time algorithm where N is the length of the total text. How-
ever the Anderson and Sobti algorithm requires a significant
once-off pre-computation that takes, as best we understand,
O(N3/2 log N) time.

Hurst et al. [39] generalized the problem of finding a min-
imal width or height rectangle that is large enough to con-
tain its content to more complex shapes. They modelled the
shape using a trapezoid list where the vertices of the trape-
zoids are a linear function of a single variable α and the
area of the shape increases monotonically in α. Since this
is a one-dimensional minimization problem they used secant
search. This is in some sense the dual problem to scaling the
textual content to fit a fixed size shape which was discussed
in Section 4.2.

6. CONCLUSIONS
Our review of automatic document formatting has hope-

fully demonstrated that it is useful to view it has a number of
different but linked constrained optimization problems aris-
ing in micro-typography, macro-typography and table lay-
out. We have seen that the maturity of techniques to solve
these problems varies greatly. On one hand solutions to
micro-typographical issues such as line breaking and justifi-
cation are efficient and robust enough to be used in practical

105

applications. On the other hand sophisticated optimization
techniques for the macro-typographical issue of finding a
page layout are not used in practical applications—the au-
tomatic generation of yellow pages directories being a no-
table exception. The practicality of current techniques for
automatic table formatting lies somewhere in between.

We believe that the industrial importance of Variable Data
Printing and the increasing sophistication of on-line format-
ting – for example, multi-column and grid layout – will drive
the development of better automatic techniques for page lay-
out in the next decade. Almost certainly these will utilize
incomplete constructive search or local search techniques.
One issue that will need to be addressed is how to combine
automatic micro- and macro-typographic layout technique.
The difficulty is that the layout issues interact, but solving
the entire problem seems prohibitively expensive.

Other issues that will need to be addressed are better
support for authoring documents that can take advantage
of better automatic layout. Also better understanding and
support for the kinds of interaction that electronic docu-
ments offer.

7. ACKNOWLEDGEMENTS
We would like to thank Simon Towers, Grayson Lang

and Bert Bos for their suggestions and criticisms. Marriott
acknowledges the support of ARC through the Discovery
Project Grant DP0987168

8. REFERENCES
[1] R. J. Anderson and S. Sobti. The table layout

problem. In COMPGEOM: Annual ACM Symposium
on Computational Geometry, pages 115–123, 1999.

[2] G. Asher. Inside type & set. TUGBoat, 13, 1992.

[3] G. J. Badros, A. Borning, K. Marriott, and
P. Stuckey. Constraint cascading style sheets for the
web. In Proceedings of the 1999 ACM Conference on
User Interface Software and Technology, pages 73–82,
New York, Nov. 1999. ACM.

[4] G. J. Badros, J. J. Tirtowidjojo, K. Marriott,
B. Meyer, W. Portnoy, and A. Borning. A constraint
extension to scalable vector graphics. In WWW ’01:
Proceedings of the 10th international conference on
World Wide Web, pages 489–498, New York, NY,
USA, 2001. ACM Press.

[5] S. Baluja. Browsing on small screens: recasting
web-page segmentation into an efficient machine
learning framework. In WWW ’06: Proceedings of the
15th international conference on World Wide Web,
pages 33–42, New York, NY, USA, 2006. ACM.

[6] J. Bateman, J. Kleinz, T. Kamps, and
K. Reichenberger. Towards constructive text, diagram,
and layout generation for information presentation.
Comput. Linguist., 27(3):409–449, 2001.

[7] P. Baudisch, B. Lee, and L. Hanna. Fishnet, a fisheye
web browser with search term popouts: a comparative
evaluation with overview and linear view. In AVI ’04:
Proceedings of the working conference on Advanced
visual interfaces, pages 133–140, New York, NY, USA,
2004. ACM.

[8] R. J. Beach. Setting tables and illustrations with style.
PhD thesis, University of Waterloo, 1985.

[9] N. Beaumont. Fitting a table to a page using
non-linear optimization. Asia-Pacific Journal of
Operational Research, 21(2):259–270, 2004.

[10] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, September 1999.

[11] S. Björk, L. E. Holmquist, J. Redström, I. Bretan,
R. Danielsson, J. Karlgren, and K. Franzén. West: a
web browser for small terminals. In UIST ’99:
Proceedings of the 12th annual ACM symposium on
User interface software and technology, pages 187–196,
New York, NY, USA, 1999. ACM.

[12] A. Borning, R. Lin, and K. Marriott. Constraints for
the web. In Proceedings of ACM MULTIMEDIA’97,
pages 173–182, Nov. 1997.

[13] A. Borning, R. Lin, and K. Marriott. Constraint-based
document layout for the web. Multimedia Systems,
8(3):177–189, 2000.

[14] B. Bos. Personal communication, May 2009.

[15] B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading
Style Sheets, level 2 CSS2 Specification. W3C
Recommendation.
http://www.w3.org/TR/REC-CSS2, 1998.

[16] C. Braganza, K. Marriott, P. Moulder, M. Wybrow,
and T. Dwyer. Scrolling behaviour with single- and
multi-column layout. In ACM Conference on the
World Wide Web (WWW 2002), pages 831–840, 2009.

[17] A. Brüggemann-Klein, R. Klein, and S. Wohlfeil.
Pagination reconsidered. In Electronic Publishing,
volume 8, pages 139–152, 1995.

[18] Y. Chen, W.-Y. Ma, and H.-J. Zhang. Detecting web
page structure for adaptive viewing on small form
factor devices. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, pages
225–233, New York, NY, USA, 2003. ACM.

[19] J. B. S. de Oliveira. Two algorithms for automatic
document page layout. In DocEng ’08: Proceeding of
the eighth ACM symposium on Document engineering,
pages 141–149, New York, NY, USA, 2008. ACM.

[20] J. D. DeTreville. An Analytical Approach to
Computerized News Layout for Newspapers. PhD
thesis, MIT, Cambridge, MA, USA, 1978.

[21] A. Di Iorio, L. Furini, F. Vitali, J. Lumley, and
T. Wiley. Higher-level layout through topological
abstraction. In DocEng ’08: Proceeding of the eighth
ACM symposium on Document engineering, pages
90–99, New York, NY, USA, 2008. ACM.

[22] D. Eppstein, Z. Galil, R. Giancarlo, and G. F.
Italiano. Sparse dynamic programming ii: convex and
concave cost functions. J. ACM, 39(3):546–567, 1992.

[23] S. K. Feiner. A grid-based approach to automating
display layout. In Proceedings on Graphics interface
’88, pages 192–197, Toronto, Ont., Canada, Canada,
1988. Canadian Information Processing Society.

[24] R. Furuta. Important papers in the history of
document preparation systems: basic sources.
Electronic Publishing, 5:19–44, 1992.

[25] R. Furuta, J. Scofield, and A. Shaw. Document
formatting systems: survey, concepts, and issues. ACM
Computing Surveys (CSUR), 14(3):417–472, 1982.

[26] F. Glover and G. Kochenberger. Handbook of
metaheuristics. Springer, 2003.

106

[27] E. Goldenberg. Automatic layout of variable-content
print data. Technical Report 286, Hewlett-Packard
Laboratories, Oct. 2002.

[28] W. H. Graf. The constraint-based layout framework
laylab and its applications. In In Proceedings of ACM
Workshop on Effective Abstractions in Multimedia,
Layout and Interaction. ACM, 1995.

[29] W. H. Graf, S. Neurohr, and R. Goebel. Ypps—a
constraint-based tool for the pagination of yellow-page
directories. In Proceedings of the KI-96 Workshop on
Declarative Constraint Programming, pages 87–97,
1996.

[30] S. J. Harrington, J. F. Naveda, R. P. Jones,
P. Roetling, and N. Thakkar. Aesthetic measures for
automated document layout. In DocEng ’04:
Proceedings of the 2004 ACM symposium on
Document engineering, pages 109–111, New York, NY,
USA, 2004. ACM.

[31] W. Hegazy and J. Gourlay. Optimal line breaking in
music. In Document Manipulation and Typography:
Proceedings of the International Conference on
Electronic Publishing, Document Manipulation, and
Typography, pages 157–169. Cambridge University
Press, 1988.

[32] R. D. Hersch and C. Bétrisey. Method for producing
visually evenly spaced typographic characters. US
Patent, 1996.

[33] D. S. Hirschberg and L. L. Larmore. The least weight
subsequence problem. SIAM J. Comput.,
16(4):628–638, 1987.

[34] N. Hurst. Better automatic layout of documents. PhD
thesis, Monash University, Department of Computer
Science, May 2009.

[35] N. Hurst and K. Marriott. Satisficing scrolls: a
shortcut to satisfactory layout. In DocEng ’08:
Proceeding of the eighth ACM symposium on
Document engineering, pages 131–140, New York, NY,
USA, 2008. ACM.

[36] N. Hurst, K. Marriott, and D. Albrecht. Solving the
simple continuous table layout problem. In DocEng
’06: Proceedings of the 2006 ACM symposium on
Document engineering, pages 28–30, New York, NY,
USA, 2006. ACM Press.

[37] N. Hurst, K. Marriott, and P. Moulder. Cobweb: A
constraint-based web browser. In M. J. Oudshoorn,
editor, ACSC, volume 16 of CRPIT, pages 247–254.
Australian Computer Society, 2003.

[38] N. Hurst, K. Marriott, and P. Moulder. Toward
tighter tables. In DocEng ’05: Proceedings of the 2005
ACM symposium on Document engineering, pages
74–83, New York, NY, USA, 2005. ACM Press.

[39] N. Hurst, K. Marriott, and P. Moulder. Minimum
sized text containment shapes. In DocEng ’06:
Proceedings of the 2006 ACM symposium on
Document engineering, pages 3–12, New York, NY,
USA, 2006. ACM Press.

[40] C. Jacobs, W. Li, and D. Salesin. Adaptive document
layout via manifold content. In Proceedings of
Workshop on Web Document Analysis, Edinburgh,
2003.

[41] C. Jacobs, W. Li, E. Schrier, D. Bargeron, and

D. Salesin. Adaptive grid-based document layout.
ACM Trans. Graph., 22(3):838–847, 2003.

[42] R. Johari, J. Marks, A. Partovi, and S. Shieber.
Automatic yellow-pages pagination and layout.
Journal of Heuristics, 2:321–342, 1997.

[43] M. Jourdan, N. Layäıda, C. Roisin, L. Sabry-Ismäıl,
and L. Tardif. Madeus, and authoring environment for
interactive multimedia documents. In Proceedings of
the sixth ACM international conference on
Multimedia, pages 267–272. ACM New York, NY,
USA, 1998.

[44] T. Kamps and K. Reichenberger. Automatic layout
based on formal semantics. In AVI ’94: Proceedings of
the workshop on Advanced visual interfaces, pages
231–233, New York, NY, USA, 1994. ACM.

[45] H.-K. Kan. A Computerized Template-driven
News-layout System for Newspapers. PhD thesis, MIT,
Department of Electrical Engineering, 1977.

[46] P. Karow. Two Decades of Typographic Research at
URW: A Retrospective. In Electronic Publishing,
Artistic Imaging, and Digital Typography ’98, volume
1190 of LNCS, pages 265–280. Springer-Verlag, 1998.

[47] B. W. Kernighan. A troff tutorial, unix version 7
manual. Technical report, Bell Laboratories
Computing Science, June 1978.

[48] D. E. Knuth. The TEXbook. Addison-Wesley, Reading,
Massachusetts, 1984.

[49] D. E. Knuth. Digital Typography. Cambridge
University Press, New York, NY, USA, 1997.

[50] D. E. Knuth and M. F. Plass. Breaking paragraphs
into lines. In Software—Practice and Experience,
11(11), pages 1119–1184, Nov. 1982.

[51] J. Kong, M. Qiu, and K. Zhang. Authoring multimedia
documents through grammatical specifications. In
ICME ’03: Proceedings of the 2003 International
Conference on Multimedia and Expo, pages 629–632,
Washington, DC, USA, 2003. IEEE Computer Society.

[52] H. Lam and P. Baudisch. Summary thumbnails:
readable overviews for small screen web browsers. In
CHI ’05: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 681–690,
New York, NY, USA, 2005. ACM.

[53] J. Lau and P. Karow. hz-program: Micro-typography
for advanced typesetting. In SID Symposium 1993,
pages 58–62, 1993.

[54] H. W. Lie. The electronic broadsheet: all the news
that fits the display, 1991. SM Thesis, MIT Media
Lab.

[55] X. Lin. Active layout engine: Algorithms and
applications in variable data printing. Computer-Aided
Design, 38(5):444–456, 2006.

[56] X. Lin. Predictive Text Fitting. Lecture Notes in
Computer Science, 4073:13–23, 2006.

[57] G. Loureiro and F. Azevedo. Constrained xsl
formatting objects for adaptive documents. In DocEng
’05: Proceedings of the 2005 ACM symposium on
Document engineering, pages 95–97, New York, NY,
USA, 2005. ACM Press.

[58] J. Lumley, R. Gimson, and O. Rees. Extensible layout
in functional documents. In Proceedings of SPIE,
volume 6076, pages 177–188, 2006.

107

[59] J. Lumley, R. Gimson, and O. Rees. Resolving layout
interdependency with presentational variables. In
DocEng ’06: Proceedings of the 2006 ACM symposium
on Document engineering, pages 95–97, New York,
NY, USA, 2006. ACM.

[60] C. Lutteroth and G. Weber. User interface layout with
ordinal and linear constraints. In AUIC ’06:
Proceedings of the 7th Australasian User Interface
Conference, pages 53–60. Australian Computer
Society, Inc., 2006.

[61] K. Marriott, B. Meyer, and L. Tardif. Fast and
efficient client-side adaptivity for svg. In ACM
Conference on the World Wide Web (WWW 2002),
2002.

[62] K. Marriott, P. Moulder, and N. Hurst. Automatic
float placement in multi-column documents. In
DocEng ’07: Proceedings of the 2007 ACM symposium
on Document engineering, New York, NY, USA, 2007.
ACM Press.

[63] C. McCormack, K. Marriott, and B. Meyer. Adaptive
layout using one-way constraints in SVG. In
Proceedings of third Annual Conference on Scalable
Vector Graphics, SVG Open, 2004.

[64] F. Mittelbach. Formatting documents with floats – a
new algorithm for LATEX2ε*. TUGboat, 21, 2000.

[65] F. Mittelbach and C. Rowley. The pursuit of
quality—how can automated typesetting achieve the
highest standards of craft typography? In EP92
(Proceedings of Electronic Publishing), pages 261–273.
Cambridge University Press, 1992.

[66] H.-W. Nienhuys and J. Nieuwenhuizen. Lilypond, a
system for automated music engraving. In Proceedings
of the XIV Colloquium on Musical Informatics (XIV
CIM 2003), Firenze, Italy, May 2003.

[67] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, 1999.

[68] K. O’Hara, A. Sellen, and R. Bentley. Supporting
memory for spatial location while reading from small
displays. In CHI ’99: CHI ’99 extended abstracts on
Human factors in computing systems, pages 220–221,
New York, NY, USA, 1999. ACM.

[69] M. F. Plass. Optimal pagination techniques for
automatic typesetting systems. PhD thesis, Stanford
University, June 1981.

[70] L. Purvis, S. Harrington, B. O’Sullivan, and E. C.
Freuder. Creating personalized documents: an
optimization approach. In DocEng ’03: Proceedings of
the 2003 ACM symposium on Document engineering,
pages 68–77, New York, NY, USA, 2003. ACM Press.

[71] D. Raggett, A. L. Hors, and I. Jacobs. HTML 4.01
Specification, section ‘Autolayout Algorithm’.
http://www.w3.org/TR/html4/appendix/notes.html#h-
B.5.2,
1999.

[72] V. Roto, A. Popescu, A. Koivisto, and E. Vartiainen.
Minimap: a web page visualization method for mobile
phones. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 35–44, New York, NY, USA, 2006. ACM.

[73] S. Russell and P. Norvig. Artificial Intelligence: a
Modern Approach. Prentice Hall, 2nd edition, 2002.

[74] E. Schrier, M. Dontcheva, C. Jacobs, G. Wade, and
D. Salesin. Adaptive layout for dynamically
aggregated documents. In Proc. of the 13th Intl. Conf.
on Intelligent User Interfaces, pages 99–108. ACM,
2008.

[75] H. T. Thành. Micro-typographic extensions to the
TEX typesetting system (doctoral dissertation).
TUGBoat, 21, 2000.

[76] C. Vanoirbeek. Formatting structured tables. In EP92
(Proceedings of Electronic Publishing), pages 291–309.
Cambridge University Press, 1992.

[77] X. Wang and D. Wood. Tabular formatting problems.
In 3rd Principles of Document Processing, pages
171–181, 1996.

[78] L. Weitzman and K. Wittenburg. Relational
grammars for interactive design. In IEEE Symposium
on Visual Languages, pages 4–11, 1993.

[79] L. Weitzman and K. Wittenburg. Automatic
generation of multimedia documents using relational
grammars. In Proceedings of 2nd ACM Conference on
Multimedia, 1994.

[80] X. Xie, G. Miao, R. Song, J.-R. Wen, and W.-Y. Ma.
Efficient browsing of web search results on mobile
devices based on block importance model. In
PERCOM ’05: Proceedings of the Third IEEE
International Conference on Pervasive Computing and
Communications, pages 17–26, Washington, DC, USA,
2005. IEEE Computer Society.

[81] H. Zapf. About micro-typography and the hz -program.
Electronic Publishing, 6(3):283–288, Sept. 1993.

108

